您好,欢迎访问西安力创材料检测技术有限公司官网!
029-84981777-305
029-81881557
西安力创材料检测技术有限公司
您的位置:主页 > 新闻中心 > 科技前沿 >
联系我们

西安力创材料检测技术有限公司

电话:029-81881557
电话:029-84870083
地址:西安市高新区高新路一品美道A座1幢11304室

咨询热线029-84981777-305

现代汽车悬架的新技术

发布时间:2008-10-25人气:

     

现代汽车悬架的新技术

  1.汽车悬架的功能与组成

  现代汽车除了保证其基本性能,即行驶性、转向性和制动性等之外,目前正致力于提高安全性与舒适性,向高附加价值、高性能和高质量的方向发展。对此,尤其作为提高操纵稳定性、乘坐舒适性的轿车悬架必须进行相应的改进。舒适性是汽车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。悬架是汽车上的重要总成之一,它把车身和车轮弹性地连接在一起。悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。悬架与汽车的多种使用性能有关,为满足这些性能,悬架系统必须能满足这些性能的要求:首先,悬架系统要保证汽车有良好的行驶平顺性,对以载人为主要目的的轿车来讲,乘员在车中承受的振动加速度不能超过国标规定的界限值。其次,悬架要保证车身和车轮在共振区的振幅小,振动衰减快。再次,要能保证汽车有良好的操纵稳定性,一方面悬架要保证车轮跳动时,车轮定位参数不发生很大的变化,另一方面要减小车轮的动载荷和车轮跳动量。还有就是要保证车身在制动、转弯、加速时稳定,减小车身的俯仰和侧倾。最后要保证悬架系统的可*性,有足够的刚度、强度和寿命。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。

  汽车悬架包括弹性元件,减振器和传力装置等三部分,这三部分分别起缓冲,减振和力的传递作用。弹性元件用力传递垂向力,并缓和由路面不平度引起的冲击和振动。从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,无需润滑的优点,但由于本身没有摩擦而没有减振作用。减振器指液力减振器,是为了加速衰减车身的振动,它是悬架机构中最精密和复杂的机械件。传力装置是指车架的上下摆臂等*形刚架、转向节等元件,用来传递纵向力,侧向力及力矩,并保证车轮相对于车架(或车身)有确定的相对运动规律。

  现代轿车的悬架一般采用质量小、性能稳定可*的筒式减震器。当轿车在不平坦的道路上行驶,车身会发生振动,减振器能迅速衰减车身的振动,利用本身的油液流动的阻力来消耗振动的能量。当车架与车轴相对运动时,减振器内的油液会通过一些窄小的孔、缝等通道反复地从一个腔室流向另一个腔室,这时孔壁与油液间的摩擦和油液内的分子间的摩擦形成了对车身振动的阻力,这种阻力工程上称为阻尼力。阻尼力会将车身的振动能转化为热能,并被油液和壳体所吸收。人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不固定在某一数值上,而是能随轿车运行的状态而变化,使悬架性能总是处在最优的状态附近。因此,有些轿车的减振器是可调式的,将阻尼分成两级或三级,根据传感器信号自动选择所需要的阻尼级。

  为了提高轿车的舒适性,现代轿车悬架的垂直刚度值设计得较低,用通俗话来讲就是很“软”,这样虽然乘坐舒适了,但轿车在转弯时,由于离心力的作用会产生较大的车身倾斜角,直接影响到操纵的稳定性。为了改善这一状态,许多轿车的前后悬架增添横向稳定杆,当车身倾斜时,两侧悬架变形不等,横向稳定杆就会起到类似杠杆作用,使左右两边的弹簧变形接近一致,以减少车身的倾斜和振动,提高轿车行驶的稳定性从外表上看似简单的悬架,包含着多种力的合作,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。

  2.现代汽车悬架的形式

  根据导向机构的不同可将汽车悬架分为独立悬架和非独立悬架两大类。70年代又发展了一种前后悬架或左右悬架相通的交联式悬架。非独立悬架的车轮装在一根整体车轴的两端,当一边车轮跳动时,影响另一侧车轮也作相应的跳动,使整个车身振动或倾斜,汽车的平稳性和舒适性较差,但由于构造较简单,承载力大,目前仍有部分轿车的后悬架采用这种型式。

  独立悬架的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架(或车身)下面,当一边车轮发生跳动时,另一边车轮不受波及,汽车的平稳性和舒适性好。但这种悬架构造较复杂,承载力小。现代轿车前后悬架大都采用了独立悬架,并已成为一种发展趋势。

  独立悬架的结构分有烛式、麦弗逊式、连杆式等多种,其中烛式和麦克弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。烛式采用车轮沿主销轴方向移动的悬架形式,形状似烛形而得名。特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操纵性和稳定性。麦克弗逊式是绞结式滑柱与下横臂组成的悬架形式,减振器可兼做转向主销,转向节可以绕着它转动。特点是主销位置和前轮定位角随车轮的上下跳动而变化,这点与烛式悬架正好相反。这种悬架构造简单,布置紧凑,前轮定位变化小,具有良好的行驶稳定性。所以,目前轿车使用最多的独立悬架是麦弗逊式悬架。

  3.现代汽车悬架上的零部件

  螺旋弹簧:是现代汽车上用得最多的弹簧。它的吸收冲击能力强,乘坐舒适性好;缺点是长度较大,占用空间多,安装位置的接触面也较大,使得悬架系统的布置难以做到很紧凑。由于螺旋弹簧本身不能承受横向力,所以在独立悬架中不得不采用四连杆螺旋弹簧等复杂的组合机构。出于乘坐舒适性的考虑,希望对于频率高且振幅小的地面冲击,弹簧能表现得柔软一点,而当冲击力大时,又能表现出较大的刚性,减小冲击行程,因此需要弹簧同时具有两种甚至两种以上的刚度。可采用钢丝直径不等的弹簧或螺距不等的弹簧,它们的刚度随负载的增加而增加。

  钢板弹簧:多用于厢式车及卡车,由若干片长度不同的细长弹簧片组合而成。它比螺旋弹簧结构简单,成本低,可紧凑地装配于车身底部,工作时各片间产生摩擦,因此本身具有衰减效果。但如果产生严重的干摩擦,就会影响吸收冲击的能力。重视乘坐舒适性的现代轿车很少使用。

  扭杆弹簧:是利用具有扭曲刚性的弹簧钢制成的长杆。一端固定于车身,一端与悬架上臂相连,车轮上下运动时,扭杆发生扭转变形,起到弹簧的作用。

  气体弹簧:利用气体的可压缩性代替金属弹簧。它最大的优点就是具有可变的刚度,随气体的不断压缩渐渐增加刚度,且这种增加是一个连续的渐变过程,而不象金属弹簧是分级变化的。它的另一个优点是具有可调整性,即弹簧的刚度和车身的高度是可以主动调节的。

  通过主副气室的配合使用,使弹簧可以处在两种刚度的工作状态下:主副气室同时使用,气体容量变大,刚度变小,反之(只使用主气室)则刚度变大。气体弹簧刚度由计算机控制,在汽车高速、低速、制动、加速以及转弯等状态下,根据所需刚度进行调节。气体弹簧也有弱点,*压力变化控制车高必须装备气泵,还有各种控制附件,如空气干燥器,如保养不善会使系统内部生锈发生故障。另外如果不同时采用金属弹簧,一旦发生漏气,汽车将无法行驶。

  4.汽车空气悬架的应用与发展

  空气悬架诞生于十九世纪中期,早期用于机械设备隔振。1947年,美国首先在普耳曼汽车上使用空气悬架,意大利、英国、法国及日本等国家相继对汽车空气悬架作了应用研究。经历了一个世纪的发展,到二十世纪五十年代才被应用在载重车、大客车、小轿车及铁道汽车上。目前国外高级大客车几乎全部使用空气悬架,重型载货车使用空气悬架的比例已达80%以上,空气悬架在轻型汽车上的应用量也在迅速上升。部分轿车也逐渐安装使用空气悬架,如美国的林肯等。在一些特种车辆(如对防震要求较高的仪表车、救护车、特种军用车及要求高度调节的集装箱运输车等)上,空气悬架的使用几乎为唯一选择。

  国外汽车空气悬架发展经历了“钢板弹簧→气囊复合式悬架→被动全空气悬架→主动全空气悬架(即ECAS电控空气悬架系统)”的变化型式。主动全空气悬架应用了电子控制系统,使传统的空气悬架系统的性能得到很大改善,汽车在各种路面、各种工况条件下能实现主动调节、主动控制,并增加了许多辅助功能(如故障诊断功能等)。目前ECAS系统在欧洲一些国家的大客车上已经大量应用,随着人们生活水平的提高,对汽车舒适性的要求越来越高,可以预见,ECAS这一先进的空气悬架系统在汽车上的应用将越来越普及。

  近几年,我国空气悬架的需求主要是与高等级客车的销售量直接相关,2002年高级客车销售量为4000台左右,2003年突破6000台,据统计高级客车的需求以每年15%的速度增长。根据国家汽车行业“十五规划”要求:我国的客车将重点发展适应高速公路需要的大中型客车,专用客车底盘及关键总成。及根据市场需求适当发展高档旅游客车。十五规划预测,2005年大中型客车年需求量为12~16万辆,交通部颁布实施JT/T325-2002的行业标准,对大中型客车配置悬架类型作了规定,其中高级大中型客车必须采用空气悬架。这为空气悬架产品的推广使用创造了一个良好的外部环境。

推荐资讯

029-84981777-305